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The flow about an obstacle in horizontal motion relative to a stratified Boussinesq 
fluid in a deep, rapidly rotating container is studied. Numerical and asymptotic 
analyses of the linearized boundary-value problems for a shallow topography are 
made to delineate the influence of stratification and ground topography on wave and 
flow structure, and to ascertain the presence of a solitary anticyclonic, or cyclonic, 
disturbance in the far field at high as well as low stratification. Although the analyses 
are restricted to the rapidly rotating case corresponding to a vanishingly small Rossby 
number, it is pointed out that the cyclonic feature remains a valid inviscid description 
in the far field except for an infinite Rossby number corresponding to no rotation. 

1. Introduction 
Wave and flow patterns produced by topographical features a t  the base of a 

rotating stratified fluid are intrinsically important to the dynamics of ocean and 
atmosphere, and to an understanding of the cyclogenesis in particular (Buzzi & 
Tibaldi 1977; Smith 1979a, b,  c ;  Hogg 1980). This paper presents a study of the flow 
structure above an obstacle in a rapidly rotating fluid which has a vertical rotation 
axis and is linearly and stably stratified. 

When the flowfield is considered as a dispersive medium for wave propagation, 
disturbances at large distances from a forcing region may be studied with the help 
of the group-velocity concept, corresponding to the Kelvin stationary-phase method 
(Lighthill 1965, 1978; Whitham 1974) ; the method has been powerfully illustrated 
by Lighthill (1978) in a number of problems of rotating and stratified fluids. The idea 
was subsequently applied by Redekopp (1975) in a study of a rapidly rotating fluid 
which is also stably stratified. Cheng (1977) analysed the flow pattern in a deep 
rotating container produced by the transverse uniform motion of an obstacle as a 
boundary-value problem a t  a low Rossby number, i.e. W = u,/sZ, L << 1 ,  where u, 
and L are respectively the velocity and transverse lengthscales of the obstacle, and 
sZ, is the angular velocity of the undisturbed rotating fluid. The reduced (outer) 
problem was solved for a thin three-dimensional obstacle in an unbounded (rotating) 
fluid. The wave pattern brought out are found to be consistent with Lighthill’s theory, 
but the lee waves in Cheng’s far-field solution do not appear to diminish far 
downstream. The discrepancy is resolved more recently in Cheng & Johnson (1982), 
where the asymptotic far field is also shown to be sensitively dependent on the 
topographical details, as is confirmed by numerical examples. 
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The container depth has been known to exert a pronounced influence on the results 
of rotating-fluid experiments (Hide, Ibbetson & Lighthill 1968). For a deep rotating 
container of height H ,  the parameter controlling the depth effect is 0 = B H / L ,  
irrespective of the obstacle thickness ratio (Cheng 1977). The reduced problems for 
finite 0 are investigated in Stewartson & Cheng (1979), where the linearized solutions 
for thin obstacles reveal several distinct features absent in the case of unbounded 0. 
The study is extended to a viscous rotating flow in Johnson (1982). Interestingly, 
Johnson finds that the linearized solution for a thin two-dimensional obstacle also 
applies with equal validity to a thick ridge - irrespective of viscosity (as well as 
stratification), as long as the Rossby number is negligibly small. 

Topographically generated inertial-wave patterns in a deep rotating annulus has 
been studied in the laboratory by Maxworthy (1977) (cf. the discussion in Stewartson 
& Cheng 1979) and by Heikes & Maxworthy (1982). I n  the latter work, linear analysis 
for a non-vanishing Rossby number is also presented; good agreement between theory 
and experiment in the streamline pattern above the ridges is apparent in a number 
of cases. 

The present work extends the studies of Cheng (1977), Stewartson & Cheng (1979) 
and Cheng & Johnson (1982) to a rotating linearly stratified fluid with the aim of 
providing a more concrete description of the near and far fields than that via the 
group-velocity approach. An outstanding feature to be brought out below is the 
presence of an anticyclonic or cyclonic disturbance in the far field, depending on the 
topography. This feature coexists with the familiar inertial lee waves a t  all levels of 
stratification, except in the homogeneous case. Following Lighthill (1965, 1978) and 
Hide (1971), we view the flow structure analysed as an outward manifestation of a 
Proudman-Taylor column, and will accordingly place the emphasis on the far field 
of an unbounded fluid a t  a low Rossby number. A forthcoming paper will treat the 
corresponding problem for a non-vanishing B, including the non-rotating limit 
B + m .  

An earlier study of relevance to the present work is the group-velocity analysis of 
stratified rotating fluid by Redekopp (1975), which shows that the tilting angle of 
the inertial-wave caustic is proportional to a BrunGVaisala frequency. The tilting 
would, however, render the far field virtually free of disturbance in a strongly 
stratified case. This implication is at variance with the theory of Hogg (1973) on 
quasi-geostrophic flow near a hydrostatic balance, as well as analyses of the 
geostrophic and related models of planetary atmosphere by lngersoll(1969), Huppert 
(1975), Buzzi & Tibaldi (1977), Johnson (1978), Smith (1979b, c )  and Hogg (1980). 
These works lead to a Laplace equation governing the flow above a submerged 
obstacle, which is also noted independently by Cheng (1977). On the other hand, the 
domain of applicability of the Laplace equation is not a t  all apparent, as exemplified 
by the bluff body considered in Hogg’s original study, which does not meet the 
implicit requirements of a thin obstacle. The desire to clarify these ambiguities 
provide motivation for the present work. The results of the analysis should enhance 
our understanding of how a stable stratification manifests itself in the rotating fluid, 
and the manner of transition between the homogeneous and a strongly stratified limit. 
I n  passing, we note that the linearized boundary-value problem of the rotating 
Boussinesq fluid has been analysed for two-dimensional ridge-like topography earlier 
by Queney (1948) and more recently by Smith (1979a, b, c ) .  The significant mani- 
festation of the stratification in the far field (cf. $5.3) has not been thoroughly 
studied therein. 

As an example of wave propagation in a dispersive medium, the present study 
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illustrates the need for an amendment of the stationary-phase and group-velocity 
methods. These methods do not take into account the contribution from the 
evanescent components of the propagating wavetrain ; the latter attenuates in a 
certain (outward) direction (cf. Stix 1962, p. 13) and may be referred to also as 
trapped waves (see Lighthill 1978, pp. 302-308). These components decay with 
distance generally a t  an exponential rate, but an exception must be made for the 
vanishing of the rate a t  an isolated (horizontal) wavenumber (beyond the cut-off), 
where the phase is also singular. It is this exception that gives rise to the distinct 
anticyclonic, or cyclonic, far-field structure upstream as well as downstream, 
unaccountable by either a group-velocity analysis or the steepest-descent method. 
Since the sense of rotation in the flow feature in question can be either cyclonic or 
anticyclonic, depending on the sign of the displacement volume of the topography, 
we shall use ‘cyclonic’ as a descriptive for the type of features wherever the 
distinction between the two becomes unnecessary. 

The linear system studied in detail in $5 is recognized as a form of the inertial wave 
equation of a rotating flow generalized to a Boussinesq fluid, which is also familiar 
in meteorological and oceanographical literature (see e.g. Eckart 1969; Ogura & 
Phillips 1962; Blumen 1972). Instead of beginning with the familiar equation last 
mentioned, we consider the problem a t  hand as one describing the flows in an upright, 
deep, rapidly rotating container, of which the analysis can be subject to verification 
in a laboratory experiment. We shall set down first in $3 3 and 4 the equations reduced 
for a low Rossby number without the assumption of a thin obstacle. This will allow 
us to focus on the more essential part of the original equations under 9 4 1 .  The 
subsequent linearization for thin obstacles yields solutions which may then serve as 
examples possessing the same (1ength)scales and occupying the same spatial and 
parameter domains as do the nonlinear solutions for the thick obstacles. Several 
resultant features, including the cyclonic disturbance in the far field, are expected 
to remain also for an isolated thick obstacle. The results should be very useful for 
the nonlinear analysis of the reduced problem to follow. Thus the present approach 
of first presenting the reduced problem without linearization in $$ 3 and 4 is believed 
to represent a rational step. I n  this connection, we point out that, under the 
quasi-geostrophy (9 l ) ,  the linear system is applicable also to a thick two- 
dimensional ridge, and that the equation governing the vertical velocity component 
in a highly stratified case is not always linearizable as is the pressure equation. 

In  $2 the assumption and the analytical framework are stated more concisely; the 
basic scales and parameters will be defined, and the domains of interest will be 
indicated. The linearized reduced equations for a thin obstacle, specialized for an 
unbounded 0, is analysed in $5, where flow and wave patterns a t  various degrees 
of stratification are delineated and their crucial far-field behaviour is described. 
Section 6 presents numerical examples of the linear solution computed from a 
fast-Fourier-transform (FFT) algorithm at different reduced heights and degrees of 
stratification ; their comparison with the far-field analysis substantiates the presence 
and the relative importance of the cyclonic disturbance a t  most levels of stratification. 
Analytical details and discussions omitted below are more fully presented in (Cheng, 
Hefazi & Brown 1983). 

2. Assumptions and parameter domains 
We consider the perturbation of a stably stratified inviscid fluid that is otherwise 

in a state of rigid-body rotation about a vertical axis a t  a uniform angular velocity 
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FIGURE 1. Illustration of coordinates and notations used in the analysis of fluid motion produced 
by a body moving in a transverse plane within a rotating vessel. 

52,. A Cartesian coordinate system (x, y, z )  fixed to the undisturbed rotating fluid is 
adopted, where z measures the distance upward along a vertical axis. The components 
of the perturbation velocity corresponding to x, y and z are denoted by u, v and w. 
The fluid dynamics to be analysed results from the slow, horizontal relative motion 
of an impermeable obstacle or topography a t  the base, z = 0, which has a typical 
velocity u, (cf figure 1 ) .  The obstacle is assumed to move from left to right in the 
direction of increasing x. An upper impermeable boundary is assumed at z = H .  The 
horizontal extent of the field of interest is assumed to be large enough that sidewall 
effects are not considered. 

A linear form of the density variation in the undisturbed fluid, namely that in a 
Boussinesq fluid (Y ih 1965), is adopted. More specifically 

€ P e - P o  - -- 
Po H Z ’  

where pe is the equilibrium density and po is the density a t  the base; only positive 
values of e / H  are considered.? The most important parameter controlling the 
stratification effect in the present study is 

(2 .2a)  

t With the centrifugal acceleration, the Roussinesq-fluid assumption must be corrected to 
account for the departure of the constant equilibrium density surface from a horizontal plane. This 
effect is estimated to be not large, a t  least in several existing laboratory facilities (cf. Cheng et al. 
1982). 
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which is independent of Q,, even though the rotation is a basic ingredient of the 
present problem. Noting that N E ( g e / H ) f  is the Brunb-Vaisala frequency, 9 is seen 
to be simply the inverse square of a Froude number uJNL (Yih 1978, p. 232) 

NL e=(--\. (2.2b) 
\ u, 1 

For a small or unit-order 8, the length and velocity scales employed in Cheng (1977) 
or Stewartson & Cheng (1979) for the principal flow region above the obstacle will 
be adequate. At a high stratification, the appropriate velocity scale is, instead of u,, 
u, zs TNL (T being the obstacle thickness), and the proper axial lengthscale is, instead 
of LIB,  QJLN or L/&W. It follows that the proper depth parameter a t  a high 9 
should be 8, = NH/Q, L = &O. 

The combinations of the intermediate and limiting values of 9, 8, 0 etc. give rise 
to a variety of distinct domains of this inviscid, rotating, stratified fluid. Although 
the present paper is limited mainly to W+O, both moderate and strong stratification 
(8 = 0(1 )  and 8 % 1) are considered. In  terms of the foregoing parameters, the results 
of the formulation for the moderately stratified case may be identified with the single 
limit W+O; O,O,Tfixed; 

and that, for the strongly stratified case (8 % l ) ,  the analysis may be identified with 
the (single) limit 

The limit (2.3) can be relaxed to include special cases with an unbounded 0, also 
(vanishingly) small 8 and small 7 ;  similarly, unbound O,, small 1 9 ~  can be shown to 
be included in (2.4).t For problems of the Earth's atmosphere the domain 
(N/Q,)2 = OW2 % 1 is important. The limit OW2+ 00, i.e. 8 % 9 1, will be 
considered along with a non-vanishing W in a subsequent work. 

The linearized equations for the pressure disturbance (of $9 3.3 and 3.5) result from 
a small thickness ratio 7 in (2.3) and (2.4). ,The examples analysed in detail in $5  
correspond to unbounded O and O,, in addition to a vanishingly small T .  It is essential 
to point out that the limit T + O  and O-t co, or O,+ co, do not lead to degeneracy 
of the reduced equations. In  passing, one may note that the nonlinear convective 
contribution has a relative order of magnitude of T&, or T W - ~ ,  under limit (2.4) ; thus 
the formulation in the asymptotic theory would have to distinguish a bounded from 
an unbounded T&. However, except for a different error estimate, the reduced 
equations for moderate and large T& are found to be completely equivalent. 

W+O; 0,,9W2,Tfixed. (2.4) 

3. Horizontally moving obstacle in a stratified, rapidly rotating fluid: 
asymptotic theory for finite 0 

We follow Cheng (1977) in the normalization of t ,  x, y ,  z ,  u, v, w and p by Llu,, 
L ,  L,  L,  TU,, TU,, TU,  and 7pQC u, L respectively. A slight departure from that of Cheng 
is the introduction of T in the velocity and pressure scale to reflect the thickness 
influence. Absent from Cheng's (1977) work is the density perturbation from its 
equilibrium value, denoted here by p, which will be normalized by ~ep,, LIH. We also 
rescale the vertical distance in the region of interest by LIW, instead of L ;  this 
dimensionless outer variable will be denoted by Z. 

t Note that a fixed 0g2 in (2.4) implies 1 Q 0 = 0(9-2),  and a small 09t2 means 1 Q 6 Q g-'. 
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3.1, Equations governing the principal flow region 
The need of the variable z" = Wz/L is apparent from the well-known error estimate 
supporting the Proudman-Taylor theorem. Namely, ap/az, au/az etc. = O ( 9 )  in 
regions not far from the obstacle; therefore the theorem must break down a t  a 
distance z = O ( 9 - l ) .  I n  this range of Z, referred to  as the outer region in Cheng (1977), 
the partial differential equations governing the dynamics of a rapidly rotating 
inviscid fluid, initially stratified according to (2.1), can be simplified to 

where D'/Dt is a convective derivative and y is the horizontal vorticity : 

With the stipulation that all variables are of unit order in this region and that 0 is 
finite, terms omitted from (3.1) belong to an order 9 higher. Equation (3.1) admits 
expansions in small 5, which confirms the existence of a columnar (inner) region next 
to the obstacle, and yields the inner boundary conditions for the solution 

D' 
Dt 

w = -Zz,(x,y,t) as Z+O. ( 3 . 2 ~ )  

Similarly, one has the condition on the upper boundary 

w = O  at z"=O. (3.2b) 

A simplification in the problem formulation has been gained through the matching 
with the inner columnar structure, whereby the formulation permits the transfer of 
the boundary condition from the body surface to  the horizontal plane z" = 0 without 
the assumption of a thin obstacle, subject to a relative error of the order 9. At a 
large lateral distance (xz + yz)): b 1 all five perturbation variables are assumed to  
vanish. 

For the case of an unbounded 0 of interest, the requirement for perturbation 
quantities to vanish in the far field will not suffice. We shall impose, in this case, a 
radiation condition corresponding to a non-negative (time average) energy flux 
directed towards infinity. This will correspond to  ruling out all incoming propagating 
waves under W+O (see 85.1). 

The first two equations of (3.1) show that the flow is nearly geostrophic, but the 
final determination depends crucially on the inertial corrections to the two geostrophic 
relations, which lead to the fourth equation of (3.1) and is responsible for the inertial 
waves. Equations (3.1) are generally nonlinear; the problem may be further 
complicated by the appearance of the Taylor-column wall in the vicinity of a bluff 
obstacle, which is expected to  give rise to  a ring of singularities, and thus a 
non-uniformity, in the solution to (3.1) a t  z" = 0. 

3.2. The linearized problem 
In  this paper we shall mainly be concerned with examples involving thin obstacles 
(7 + 1 ) .  Except for a modification brought about by a change in the equivalent 
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obstacle shape due to  the nonlinearity in the near field, the three-dimensional far 
field determined by the linear theory should not differ substantially from that for a 
thick obstacle. 

In  the (second) limit 7+0, D'/Dt  in (3 .1)  becomes a/at ,  (3 .1)  may then be linearized 
and combined to yield, with VZ, = a2/i3x2+a2/ay2, 

$g+(;+o)v:]p = 0, 

and (3 .2)  may be replaced by 

- [ - + ( ~ + o ) z , ]  a aP = o at z"= 0, 
at aa 

(3 .3)  

(3 .4a)  

(3 .46)  

where, as before, (3 .46)  will be replaced by a radiation condition if 0 is unbounded. 
The vanishing of the disturbance at x2 + y2 + 00 is also assumed. 

Equation (3 .3)  represents an extension of the familiar inertial wave equation (see 
e.g. Greenspan 1969; Lighthill 1978) to a stratified fluid, taking into account the 
influence of the displaced constant-density surfaces ; (3 .3)  may therefore be referred 
to as the (linear) equation of inertial-baroclinic waves. A more complete form of the 
linearized equation allowing non-vanishing 9 and 8 can be derived quite readily from 
the conservation of potential vorticity in the context of a global model of planetary 
atmosphere (see Blumen 1972); its equivalence to (3 .3)  in the flow region 5 = O(1) 
under the limit (2 .3)  can be readily checked. Interestingly, following the thrust of 
Obukhov (1949),  Blumen (1972) indicates how a quasi-geostrophic system equivalent 
to (3 .3)  may also be derived from an analysis with multiple timescales. 

Since the far-$eld flow pattern of a steadily moving obst,acle is the focus of the 
present study, we shall obtain explicit solutions to (3 .3) ,  ( 3 . 4 ~ )  for an unbounded fluid, 
taking 2, in the form of Z,(x- t ,  y )  pertaining to a steadily moving obstacle. The 
solution structure will be delineated both asymptotically (for large 2) and 
numerically. 

Equations (3 .1) ,  (3 .2)  and (3 .3) ,  (3 .4)  provide a suitable framework for the study 
of departure from the inertial-wave domain, but the ordering implicit in the 
formulation for the limit 9 -f 0 may become inappropriate as 8 increases beyond order 
unity. A reformation based on a different set of variables allowing an unbounded 0 
is therefore presented below. 

4. Hydrostatic balance as a limit of a strongly stratified, rotating fluid: 
asymptotic theory for high 8 

An examination of the dependence on 8 in the equations of $ 3  indicate that, as 
8 increases to  beyond unit order, the normalized perturbations p ,  u, v and 6 would 
increase like &, while the vertical variable Zshould be rescaled as &z. I n  the following, 
we will present the governing equations first for the domain 1 + 0 -+ 9-2. 
Subsequently we will examine a more strongly stratified domain 1 4 8 = O(Bp2).  As 
previously mentioned, the range of a still higher 8, namely 8 + Wp2,  will not be 
considered. 

As will be apparent later, the magnitudes of w and D/Dt belong to 0(7&). 
Therefore, in order t,o provide an unambiguous formulation of the reduced problem, 
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one should establish the reduced equation systems for the bounded and unbounded 
T& separately; these have been documented in Cheng et al. (1982). In  the following, 
we shall formulate the problem in the principal flow region under T& = O( l ) ,  and will 
only remark briefly later on the case T& + 1 ,  since the two reduced systems turn out 
to be equivalent. 

We introduce the rescaled variables for p ,  u and v :  

4.1. The problem for  1 4 0 4 

where us is a reference velocity independent of u, and Q, : 

u,=7&uc=7 €-gL . G >” 
With tfhe variables introduced in (4.1), and replacing z“ by E’ = &WE = &z“, the 

inviscid equations for the flow region of interest become 

a@ -2G+- = 0, 2C+- = 0, - + p  = 0, ax a Y  a.zf 

2---c= 0) -p-w = 0, 
aw D‘ D’ 
a 3  Dt Dt 

where 
D‘ a 
Dt - at 

The relative errors in (4.2) are, a t  the most (Cheng et al. 1982), 

el = o(e-l, &9) 
It follows that, under 1 4 0 49F2, and T& = 0(1), the quasi-geostrophic flow 
approaches a hydrostatic balance in the vertical momentum equation, yet the 
baroclinic effects are still crucial for this system. A consequence of (4.2) will be 
deduced in $4.2. It is essential to note that the assumption of a thin obstacle is 
implicit, since 1 4 0 4 and 7th = O(1) require T << 1. 

The solution admits a Taylor expansion in 6, which confirms the existence of an 
inner columnar structure over W@ 4 2’ 4 1 ,  and identifies the boundary condition 
for the solution to (4.2) to be 

D’ 
w = ,,Z,(X, y, t )  as 8 + 0 .  (4.3) 

The matching also determines 9, C, G , [  and p” on the obstacle in terms of their values 
in the inner limit 8+0 ,  with errors again comparable to el. Similarly, the upper 
boundary condition is 

H 
L (4.4) w = o for z“‘ = &a- = &O = 0,. 

At large lateral distance x2+ y2+ 00 we assume all disturbances to subside, and in 
the unbounded case 0, --f co a radiation condition barring all measurable incoming 
disturbance will be enforced. 
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For an unbounded 7& the vertical velocity w and the time t should be rescaled as 

(4.5) 

With these modifications, the 5'-derivatives of p", C, 5, d and also p" are seen to be 
of order &W or higher. The equations governing the region z"' = &Wz = 0(1) in this 
case are reduced to a system which is again identifiable with (4.2)-(4.4) except for 
the replacement of w by 6, and V / D t  by D'/Dt = a / a t  + .ii a/ax + 5a/ay. The order 
8-1 in the relative error in el is now to be replaced by r2, which results from the 
remainder in the hydrostatic balance. Therefore, taking into account both large and 
small 76, the error in (4.2) is parametrically 

e; = o p ,  &w, 7 2 ) .  (4.6) 
The foregoing results can be extended to a still higher stratification with 

8 = 0(W2),  for which a distinct columnar inner region no longer exists since 
&W = O(1) and the principal (outer) region in which (4.2) applies is, in fact, z = O(1).  
The relative errors of (4.2)-(4.4) in this case become O(W, 7). 

4.2. Reduction to Laplace equation : thin obstacles 
The equations reduced in 54.1 are seen to hold only for a thin obstacle (7 4 1 )  even 
though the systems under 1 < 8 4 W P 2  and 1 4 8 = O ( W - 2 )  remain nonlinear in 
general. However, the equation governing the pressure and the horizontal velocity 
fields can be reduced to a Laplace equation as follows. 

The term aG/a5' in the fourth equation of (4.2) may first be eliminated by 
differentiating the fifth equation of (4.2) with respect to Z' and then eliminating p" 
through the hydrostatic balance, so that 

a D' a D' 
azf ~t a z  Dt 

2----p"+--g= 0. (4.7) 

Thanks to  the geostrophy which permits communication of operators a/aZ' and D'/Dt 
for afi/aZ', the equation governing j5 in the leading order may finally be reduced from 
(4.7) to 

&[(4$p+V:>B] a = 0. 

Through (4.2), upper and lower boundary conditions may also be written in a 
Neumann form for j5 : 

j5 = 0 a t  z"= 8,. (4.9a, b)  
$ [ & j 5 + ~ , ] = 0  as Z + O ,  -- D' a 

Dt a5' 

For a system in which the fluid can be assumed to originate from a uniform state 
far upstream where Z, = 0, the convective derivative may be dropped from both (4.8) 
and (4.9). After scaling out the factor 4, one arrives from (4.8) at the Laplace equation 
of Hogg (1973) with Neumann boundary conditions. We note that the equation 
governing the limit solution for d cannot be linearized unless T& is small. 

An important conclusion reached from the above study is that the system (4.8), 
(4.9) is recoverable from the linearized system (3.3), (3.4), which is derived for a finite 
8. Therefore the latter system may now be meaningfully applied to the study of 
transition between the homogeneous and the highly stratified limit, as will be carried 
out in $5. 
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In Hogg’s (1973) analysis leading up to (4.8), the assumption 0, = O(1) and 
T& = O(1) are implicit, although the requirement of r < 1 is not clearly pointed 0ut.t 
In  the unbounded case, the far-field pressure disturbance obeying (4.8) and ( 4 . 9 ~ )  
will asymptotically approach 

jjZwdXdY 
(4.10) 

where the surface integral of 2, is the normalized displacement volume. The 
behaviour arrived here for a high 8 signifies, via the quasi-geostrophy, an anticyclonic 
fluid motion above a compact topography when the displacement volume is positive 
and a cyclonic one when negative. This results in an asymmetrically disposed horizontal 
streamline pattern. A closed streamsurface is expected to form as 7 6  becomes of 
unit order; its horizontal extent and height increase with 70% On the other hand, (4.10) 
shows that the magnitudes of the horizontal velocities attenuate more rapidly than 
the pressure as (z“’)-2; the vertical velocity w will decay even faster, as ( Z P 3 ,  since 
w = D’p/Dt = - D’(d@/dz“’)/Dt. Subsequent examples will show that  the cyclonic 
disturbance corresponding to (4.10) remains a far-field feature for all 0 =# 0. Buzzi 
& Tibaldi (1977) have studied effects of a higher-order inertial (finite 92) correction 
to Hogg’s (1973) Laplace equation, i.e. (4.8). 

1 
fj-- 

7c (x2 + y2 + @’)2)4 ’ 

5. Stationary flow pattern for an arbitrary topography: thin obstacle in a 
container of infinite depth 

To exemplify more clearly the stratification effect on the inertial-wave field 
generated by an obstacle, the linearized system (3.3), (3.4) for a thin object is solved 
for the case of uniform translation in a container of infinite depth. The far field and 
the computed results deduced from the solution will illustrate the transition between 
the limits of the zero 0 and an unbounded 0 and will confirm the presence of the 
cyclonic disturbance for all 8 $: 0. 

5.1. Xolution in terms of obstacle geometry 

In  the body-fixed coordinates (x’, y, z )  with x‘ = x- t ,  (3.3) and ( 3 . 4 ~ )  may be written 
&S 

where, for convenience, p and z“ have been replaced by 

respectively. A radiation condition will be applied to the far field in addition to the 
assumption of a vanishing disturbance as x ’ ~  + y2 + 

g G i g  

--f co . 
The solution $ may be constructed from sinusoidal (exponential) wavetrains 

exp [i(wx’ -t- gy+ kz^-Q’t)], 

with w ,  v, k: and Q’ satisfying the dispersion relation of (5.1), which in the stationary 
case (i.e. Q’+O) gives 

k=-i-lk) for w 2 > 0 ,  k = k i l k l  for d < O ,  

t Hogg’s parameters S and /3 correspond to 2n 0, and 7~f l (2n) :Os  respectively. Hogg’s (1980) 
S6 f e is identified here as &. 
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with 
(El = ( ( 0 2 - 0 8 )  (w2+a2)(:. 

For the problem of 9 - t O  with a fixed 0, the radiation condition is equivalent to the 
exclusion of all incoming wavetrains in the (x, y ,  z, t)-frame, since the group and phase 
velocities have the same sign for the system at hand.? Since x’ = x- t ,  the algebraic 
sign for k must be chosen to agree with that of w so as to give outgoing wavetrains 
for w 2  > 0. The condition also rules out disturbances with amplitudes increasing with 
2 ;  therefore only the positive imaginary root of E is admissible for w2 < 0. This cor- 
responds to the evanescent waves. The above conclusions may be expressed more 
compactly by defining the function (wz - 0); as 

The steady-state solution satisfying the radiation condition may now be represented 
by an integral over the ( w ,  a)-domain: 

00 

@ = [“ [ h(o,a)exp[i(wx’+ay+(w2-0)~(w2+a2):2)]dwda, ( 5 . 4 ~ )  
J - w  J --m 

where the function h(o, a )  is determined from the inner boundary condition ( 5 . 2 )  as 

with F(w,  a) being the Fourier transform of Zw(x’, y )  

M 

F(w,  a) [“ [ Zw(z’, y) e-iwz’-iuY dx’ d Y .  

(5.4b) 

(5.4c) 
J - w J - c a  

For surfaces such as a spherical cap, or simple three-dimensional shapes with an 
algebraic or exponential decay, the integral of @ exists in the Riemann sense; its 
computation amounts to the inversion of the Fourier transform ( 2 7 ~ ) ~  h(o, a )  eik2 and 
can be computed efficiently via standard fast-Fourier-transform (FFT) techniques 
for each fixed 2. Results are discussed in $6. 

Solution (5.4) can be written out as two distinct parts: one is made up of 
components of the outgoing, propagating (non-attenuating) wavetrains and the 
other is composed of the evanescent components. The latter attenuate as 2- co and 
hence can propagate only horizontally. Thus 

@ = @I+ @z, 
-m s da jz /qw, a)  eiwz’+iuy+ilW &, 
-w 

9 (5.5a) + Jw d a  1“ h(w, a )  eiwz’+icry-ilkll dw 
--m --m 

d 
@ 2 -  = Jm da J h(o, a) eiwz’+iW-IkIl dw. (5.5b) 

-W -d 
t The time-average energy of a wavetrain propagates in the direction of the group velocity 

(Lighthill 1965, 1978; Whitham 1973). The z-component of the group velocity for a plane wave 
in the present problem is ~ / w ( w ~ + c T ~ ) ,  The group and phase velocities have opposite signs if 
e > 49-2. 
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For the outgoing wave portion $l the stationary-phase method or similarly the 
group-velocity concept (Lighthill 1965, 1978; Whitham 1973) can be applied to the 
far-field analysis. Its contribution features lee waves and their caustic, much as for 
the inertial waves in the homogeneous case. Most, evanescent wave components 
contributing to q!r2 attenuate exponentially in z except near w = a = 0, where Ikl is 
also singular. This singularity, unaccounted for in the stationary phase method, will 
give rise to a large-scale cyclonic disturbance in the far field to be studied below. 

5.2. Three-dimensional far  field (2 9 1)  

The contributions to the far field from $l and from k2 will be analysed separately. 
Owing to the increasing rate of oscillation at large 2 in the phase 2@ = wx’ +by + k2, 
the contribution of h ( w ,  a) to @l of ( 5 . 5 ~ )  is generally small a t  a large distance, except 
in the neighbourhood of stationary points where a@/aw = a@/aa = 0, i.e. 

where X = x‘/i and Y = y/2 are considered to be fixed. This gives four pairs of roots 
as stationary -point locations : 

k- Y 
a2 = -- , (5.7a) w1 = $[k,(lXl-u)$, /TI = -- k+ y ;  w2 = i [k - (  1x1 + U ) ] i ,  

w1 w2 

0 3 =--0 /T3=-a1; w 4 = - w 2 ,  c4 =-a2 (5 .7b )  
where 

= [ x 2 - 8 ( ~ 2 + e ) l a ,  k ,  - =:ixl+~. 
As long as u is real, all w j  and aI will be real, giving four stationary points for the 
integral $l for each point in the spatial domain X2-8(  Y2+O) > 0. However, 
according to (5.6), X must be negative (corresponding to the downstream side), since 
w2 > 0 in yk1. Therefore the four real stationary points can exist only in 

x c -22 /2 (r+e)* .  (5.8) 
Thus the conic surface defined by the hyperbola X = -2  2/2 ( Y z + B ) i  signifies a 
boundary, upstream of which prominent lee waves cannot be found. The appearance 
of 8 in (5.8) shows clearly how the stratification rounds off the wedge-shaped leading 
edge of Lighthill’s (1967) caustic and how it  is displaced downstream. The hyperbolic 
caustic is illustrated in figure 2 (in dots) for three different values of 8,  along with 
wave crests a t  2 = 10 computed as contours of constant phase. 

The caustic represents the envelope of all the group-velocity vectors of the outgoing 
wavetrains. The limiting angle of these vectors in the far-field symmetry plane is 
precisely that specified by X = - (86); identifiable with the tilting angle of the caustic 
noted previously by Redekopp (1975). 

5.2.1. +hl in the region downstream of the caustics 
The stationary points (w j , s j )  shown in (5.7) exist for this region. The inertial- 

wave-like mode $1 is therefore dominated by the ranges of w and a around (wj, gj) 
which are the least affected by the self-averaging (destructive-interference) effect. 
Thus 

(5.9) 
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FIQURE 2. Wave crests and caustic at 4 = 10 above a three-dimensional obstacle computed from 
far-field formulas for three values of stratification parameter 0 = 0, 1 and 10. 
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where A ,  B and C are $Ow,, $Qrr and GWv respectively, and 

H .  K. Cheng, H .  Hefazi and 8. N .  Brown 

rBiic2)j sgn ( A ,  B, C)j = sgn Aj  + sgn 

This can be more explicitly expressed, for fixed X, Y and 8, as 

Re[eii@("2,"z)F(w,, u2)J 

where Re signifies the real part, 

and i2@(w2, u2) is the same except that  u is now changed to -u. The other factors 
in (5.10) involving k +  - and q 2  may also be written as 

I(($- ' ) / k + ?  = I[(lXl- k+)2  + Y21/k+14 

and I ( w ~ - B ) / k J ~  are the same except that k ,  is now changed to k - .  I n  the limit 8+0 
(5.10) recovers precisely the far-field expression for @ in the unstratified case 
corresponding to that of the w in Cheng & Johnson (1983). 

At larger 8 the wave pattern behind the caustic determined by $l remains similar 
to that at 8 = 0, except that  the region delimited by X +  [8( Y2 + S)]; < 0 is to be found 
downstream at a larger X, and that the wavenumber level increases with 8 like 28. 
However, the amplitude for must greatly diminish with increasing 6, since F(w,  CT) 
vanishes with increasing w and u. Equation (5.10) indicates explicitly how @l in the 
far field is controlled by the vertical distance 2 and the distance from the caustic. 
The unbounded singularity at X = - 2[2( Y2 + O ) ] ;  confirms the breakdown of (5.10) 
near the caustic, which is to  be anticipated since i t  corresponds to the vanishing of 
the stationary-phase expansion's discriminant (cf. (5.9)). Therefore a development 
for large 2 must be carried out separately for the vicinity of the caustic. 

5.2.2. 

Near the caustic the four narrow ranges of w and IJ contributing effectively to 
into two ranges around 

in the caustic transition zone 

merge 

It is expedient to  introduce a small variable r to replace X ,  and small frequency 
parameters h and Q to replace w and u :  

X 2  = 8(Y2+8)(1+r) ,  W *  = i-43 ( Y 2 + 8 ) i ( 1 + h ) ,  ~'=T2/3Y(l+&-22h) ,  
(5.12) 

where the superscripts + and - refer to the positive and negative ranges of w ;  the 
variable r is positive on the downstream side and negative on the upstream side. The 
@ may then be developed for small r ,  h and Q, considering first a positive w ,  
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Notice the absence of terms proportional to h or Q a t  r = 0. The @ for a negative 
w has the same developmenrt except for an algebraic sign. The results may be 
expressed as 

x Ai (g) exp [ - i&&X22( 1 -$) +fin] (5.14) I 
where Ai (C) is the Airy integral and 5 rescaled r : 

Note that the X 2  in the imaginary exponential argument of (5.14) is X 2  = 8( Y2 + 8). 
As r+--cO, kl of (5.14) matches that of (5.10) from the downstream. As r-++oO, it  
yields an exponential decay upstream. Higher-order contributions unaccounted for 
in the above analysis will decide the correct algebraic decay to match that in the 
upstream region. 

5.2.3. upstream of the caustic 

There is no stationary point in (0, a) for (X, Y) upstream of the caustic. Examina- 
tion for a fixed X, Y and 8 shows that $l in this region decays with increasing height 
no slower than iP3 upstream of the caustic. A similar conclusion for also holds for 
an unbounded 6 for 8.2 9 1,  which is found to be comparable to  OF(&, O)/(8%)3. For 
8 4 1 the far-field estimates for $l must take into account the relative magnitudes 
of 8-1 and 2.  In the limit 8+0 the corresponding result of Cheng (1977) is recovered. 

5.2.4. Contribution from $2 

It is essential to recall that the far-field behaviour in the three distinct regions of 
535.2.1-5.2.3 are significant only with regard to i.e. the contribution from the 
outgoing wave components. However, the contribution from the evanescent wave 
components @2 will be seen to be equally or more important, unless 8 = 0. The 
evanescent components generally attenuate a t  an exponential rate. Hence they are 
unimportant in the far field, but exceptions occur in vicinities of singularities where 
the imaginary part of the phase 2@ also vanishes. This happens a t  w = B = 0 in the 
present problem. The following analysis for k2 therefore represents an amendment 
of the stationary-phase or saddle-point method. 

To analyse the latter behaviour we recast the integral of k2 of (5.5b) into polar 
representation with p 3 ( w 2 + a 2 ) i ,  9 = tan-l ( a / w ) ,  

2 sec 9 

$ - - J=f F((p ,8) )  (O+COS29)$  
0 ( 2 V  

2 -  

x exp { [i(X cos 9 + Ysin 9) - (6 - p2 cos2 a):] p2} dp, (5.15) 

where F((p,  9)) = F(w,  a). The real exponent -p2(8-p2 cos2 9); shows exponential 
decay for all 8 and p, except at p = 0 and at p = &sec9, where the imaginary part 
of the phase 2 0  is seen to be both zero and singular in the ( w ,  a)-domain. The integral 
over p may, however, be evaluated by parts. If we retain only the lowest-order term 
in (82)-l, the integral in question is 

- F ( ( 0 ,  8 ) )  & 
2[i(Xcos9 + Y sin@) - &I ' 

15-2 
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Note that the upper limit a t  p = i%sec9 does not contribute, owing to the presence 
of the factor (8-p2 cos29)i in (5.15). Therefore, subject to a relative error of order 
(0$)-1, one arrives a t  

d9 
I- i (Xcos&+Ysin#) '  

or 

(5.16a) 

(5.16b) 

where F(0,O) is identified simply as the normalized displaced volume of the obstacle. 
Unlike that of k1, which has a bias in the downstream direction for all 8, the 

contribution of $2 is centred around the vertical $-axis directly above the obstacle ; 
except for a scale change in the coordinates, it  has the same effect of a point source 
on the velocity potential in classical hydrodynamics. The region upstream of the 
caustic, where the lee wave from $l is absent, is therefore dominated by $2, which 
according to (5.16) is of order l/d. Therefore it is comparable to the magnitude of 

behind the caustic. Its relative importance will be further increased for a large 
8, not only because the horizontal scale of the field is increased by the factor &, but 
also because the typical magnitude of $2 upstream of the caustic and that of the 
lee waves of $l downstream of the caustic is in the proportion of F(0,O) : F(1/8,  0), 
noting that F(w,  0) vanishes for )w1+ CO. 

in which wave crests are densely 
packed, the symmetrically distributed pressure compression given by (5.16) (recalling 
p = - 2$) implies an anticyclonic disturbance, causing a clockwise twist of streamlines 
in a horizontal plane for a positive F(0,O) and a cyclonic one with a counterclockwise 
twist for a negative F(0,O).  This makes possible atJ a large enough 8 the occurrence 
of a trapped-fluid region above the obstacle, suggesting a deformed Taylor column 
(cf. $4.3, also Hide 1971). 

The result (5.16) may not be too surprising in view of the development in $4 for 
large 8, since the source-like behaviour shown is a particular solution to the Laplace 
equation. The interesting, unsuspected feature is its coexistence with the lee-wave 
mode $1 and its omnipresence for all 0 =+ 0. As 8 decreases toward zero, its horizontal 
scale diminishes and the domain (Xz + Yz)i  = O(&) for $2 along with the leading edge 
of the caustic merges into the neighbourhood of the vertical axis from the obstacle. 
Its amplitude however, remains unchanged. 

I n  contrast with the lee-wave pattern of 

5.3. Two-dimensional solution and f a r  Jield 

For a two-dimensional ridge-type topography, the Fourier integral of $ does not exist 
for an unbounded 0 in the Riemann sense, owing to the pole singularity in h. One 
could nevertheless define the solution $ via a contour integral. We choose, however, 
to analyse first the velocity field, in particular a$/ax', for which the solution may 
again be obtained as the sum of two distinct terms: 

with 

(5.17) 
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The far-field expression for the two parts of (5.17) may be carried out in a manner 
similar to $5.2. The evanescent components in this case contribute as 

from which yk2 is seen to be 

(5.18b) 

assuming a+2/a2 to vanish as lx’l+ co. The vertical velocity w and the streamline 
deflection in this case can be similarly worked out, but their magnitude is much 
weaker, as already noted. We note that, in the two-dimensional problems, the lee-wave 
caustic for k1 is X = - (88): and that the lee-wave amplitude from is typically of 
order &F(&) i-3.t From (5.17), the drag of a mountain ridge can be evaluated. We 
note in passing that Smith ( 1 9 7 9 ~ )  has analysed a similar two-dimensional ridge 
problem for a high 9, including the O ( 9 - l )  correction on the mountain drag. 

6. Examples: computation and study for moderate and high i 
In  the following, we discuss numerical examples of two- and three-dimensional 

solutions which are computed with the help of the fast Fourier transform (FFT). 
Mainly the results for smooth topography 2, = (1  + x’~)-~ and 2, = (1  + + y2)+ 
a t  reduced height i ranging from 2 to 15 are studied. Against these data, the analytical 
far-field results of $5.2 will be compared, and the importance of the cyclonic feature 
is verified. 

6.1. Use of the FFT algorithm 

The FFT algorithm employs typically 1024 uniform divisions over the w-range 
[ - 32n, 32x3 and over the x-range [ - 16, 161 for two-dimensional problems; in the 
three-dimensional cases 1024 uniform divisions over -16-x < w < 16-x and 64 over 
--x < CT < -x are used. The mesh spacings are typically Aw = ACT = 2-x/64, with 
A X  = 1, 16 AY = +. We note that a sufficiently fine mesh in (0, a )  is needed near 
w = a = 0 to resolve the singularity (wz-O): / (w2+82)!  in the three-dimensional 
solution; cf. (5.4) or (5.5). In  addition, an even finer mesh is required to recover 
accurately the pressure hill of @z (see $6.3 below). On the other hand, with a fixed 
number of divisions assigned to w and CT, a finer uniform mesh means reductions in 
the upper limits on w and a ,  therefore a loss in the ability to resolve the finer field 
structures. The choice of Aw = Aa = 2-x/64 represents a compromise. The mesh 
divisions in X and Y define the locations at which the solution data are available. 
Their relatively large sizes do not affect the truncation errors. 

6.2. Two-dimensional examples 

Figure 3 presents the spanwise velocity a+/ax’ a t  i = 5 as a function of X for a ridge 
topography 2, = (1  + x ‘ ~ ) - ~  a t  two levels of stratification, 8 = 1 and 8 = 5. The FFT 
solution for a+/ax‘ at 8 = 1 and 2 = 5 in figure 3 ( a )  shows clearly the densely packed 
lee-wave pattern behind the caustic, X < - (8@, as in the unstratified case. 
Superimposed on the latter is a doublet-like antisymmetrically distributed a+/ax’ as 
anticipated from the preceding far-field study ( 5 . 1 8 ~ ) .  A few precursor wavelets are 
noticeable over - (so)! < X < 0, which may be attributed to the transitional 

t For a narrow ridge of finite span, one must allow in (5.18) a correction to the relative wind 
velocity due to a self-induced velocity pertaining to a three-dimensional correction (cf. Cheng et 
al. 1982, p. 18). This point has also been observed by Smith (19793). 
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FIGURE 3. Horizontal velocity perturbation as a function of X above the two-dimensional ridge 
2, = (1 +P-’ a t  2 = 5 for two degrees of stratification: (a )  0 = 1, ( b )  0 = 5.  Au = 2 ~ / 3 2 ,  
N = 1024. 

structure of the caustic zone (with a thickness perhaps of the order 2 3 ) .  The peak 
in the lee-wave amplitude appears to be comparable to, but noticeably larger than, 
that of the smooth doublet-like mode upstream (X > 0). This is understandable from 
comparison of the magnitude of a$,/ax’ to that of a$,/ax’. The former is of order 
&B’(&)/l$, and the latter belongs to the order &P(O)/lhl. Thus, increasing the height 
should enhance the relative prominence of the lee-wave group (in the spanwise 
velocity) over a ridge, while increasing stratification has the opposite effect. These 
expectations are quite clearly substantiated by the result obtained for a higher 
elevation 2 = 10 (not shown) and by figure 3 ( b ) ,  where 6 is increased to 5 for i = 5 .  
Note that the peak of the lee-wave group in figure 3 ( b )  is shifted to a considerable 
distance downstream close to X = - (8B)i = - 4/40. Also note that the lee waves in 
figure 3 ( b )  are more densely packed than those in figure 3 ( a ) .  It may be explained 
by the increased magnitude of the imaginary argument in ei@*. 
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It is essential to recall that the source-like logarithmic behaviour of the pressure 
field given by (5.18b) would dominate over the corresponding lee-wave pressure even 
for a moderate 8 = 1 a t  t = 5 .  On the other hand, one would find little evidence of 
the evanescent components in the upwash w, or of the upward streamline displacement, 
as explained earlier a t  the end of $4. (Figure 5 in Cheng et al. (1982) illustrates the 
vertical velocity computed by the FFT technique for i = 6 = 5 . )  

6.3. Three-dimensional examples 

We study next the numerical examples of three-dimensional solutions (5.4) via the 
FFT technique, considering a smooth shape 2, = (1 + X ’ ~ + Y ~ ) - ~  for which 
F(w, a)  = npK,(p), where p = Iw2+g21: and K,(p) is the Bessel function of the second 
kind of the first order. To illustrate the prominence of the cyclonic feature and how 
the stratification controls the far-field structure, the pressure distributions along a 
horizontal line Y = 0.5 and 2 = 5 are presented in figure 4 in the form of t@ versus 
X ,  for three levels of stratification, 6 = 0.1, 1 and 5. The termination of w a t  k 16n 
is expected to cause inaccuracy in defining the refined structure of the wave group, 
but is quite adequate for describing the pressure hill of interest. 

Several features in good agreement with the far-field analysis of $5.2 are apparent 
from figure 4:  (i) the wavenumber intensity increases with 0; the wave packets 
diminish in strength with 8, being shifted downstream by an amount roughly (SO)+ 
a t  their leading edges; (ii) distinct from, and superimposed upon, the wave pattern 
is the smoothly distributed depression (negative) of $ corresponding to the ‘pressure 
hill’ (recall p = -2@), which extends symmetrically about a vertical axis above the 
obstacle, thereby raising the mean level of the lee-wave pressure above zero (or 
lowering the mean @ level below zero) ; (iii) the horizontal scale of the ‘hill ’ increases 
and decreases with 8, but one cannot find in any case its peak reducing rapidly with 
a decreasing 6 (including the case 8 = 0.1 shown). If one takes into account the 
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n 1 

J, - $2 I 
FIQURE 5. Details of solution structure computed from FFT algorithm and from asymptotic 
analyses for 0 = I ,  2 = 10 and Y = 0.5: (a) FFT;  (6) asymptotic. The obstacle shape is 
2, = (1 + ~ ‘ ~ + y ‘ ~ ) - ~ .  N = 1024 x 64, AU = 21~/64, AU = 21~/64. 

different &values and the fact that Y = 0.50 4 0, one finds the asymptotic value of 
min(2+) from (5.16) to be -0.488, -0.447 and -0.267 for 0 equal to 5, 1 and 0.1 
respectively (shown as open circles). They are indeed not far away from the 
corresponding FFT data curves. A more detailed study shows that the correlation 
with the pressure hill should improve not only with increasing height 2, but also with 
increasing stratification 0. 

We note that the 2+ data of 2 = 5 for 8 = 1 in figure 4 agree exceedingly well with 
the asymptotic formula (5.16). The corre1ate.d data for the higher stratification 
(0 = 5) agree also quite well with (5.16); however, slight discrepancies are discernible 
which indicates a limitation of the FFT algorithm in use and are traceable to the 
discretization errors in the (0, a)-domain. With these considerations taken into 
account, the singularities in (5.15) suggest that the FFT results obtained may not 
be very accurate for 2 > 10, and, perhaps, 0 > 5 .  

To ascertain further the quality of the computation and the adequacy of the 
asymptotic analysis, we show in figure 5 (a )  the detailed distributions of + a t  2 = 10 
and Y = 0.5 for 8 = 1 from the FFT integration with Aw = A a  = 2x164, and we 
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FIGURE 6. Horizontal streamline pattern above the obstacle z J L  = T/( 1 + ~ ' ~ + y * ) ~  
at a mid-altitude 4 = 0.50 under a stratification 0 = 5 ;  T = 0.25. 

compare it with the corresponding far-field results $ = + $2, based on (5.10) and 
(5.16), where the detail is shown in figure 5 ( b ) .  Both the pressure hill from (5.16) and 
the lee-wave pattern from (5.10) as well as the leading edge of the wave pack are 
reproduced and marked in figure 5 ( b ) .  Evidently the mesh with Aw = A u  = 27~164 
is sufficient for capturing most of the far-field features of interest for this case of 8 = 1 .  
The fine pattern of lee waves behind the caustic in the two plots appears to correspond 
rather closely ; point-by-point comparison is impossible unless the range of w and u 
can be further increased. One notes that the existence of two distinct rapidly oscillating 
modes, cf. (5.10), causes the lee-wave envelope to be ill-defined. Therefore, the 
asymptotic envelope is not shown in the three-dimensional study. 

Finally, we show in figure 6 a horizontal streamline pattern from the FFT solution 
for 0 = 5 a t  a mid-altitude 2 = 0.50. An obstacle thickness ratio 7 = 0.25 is assumed, 
giving a sizable T& = 0.56. It is stipulated in the calculation that the trapped fluid 
inside the closed streamsurface also originates from the same uniform state. The 
pattern confirms the existence of a column-like closed streamsurface, revealing also 
stationary eddies in the lee in this case. The latter is evidently an inertial-wave 
correction to the geostrophic/hydrostatic-balance model discussed in $4. Flow 
patterns for other combination of 7 and 8 are presented along with data for a 
non-vanishing W in a forthcoming paper. 

7. Concluding remarks 
The foregoing study shows that an obstacle or the topography at the horizontal 

base of a stably stratified, deep, rotating fluid supports not only lee waves a t  great 
(scaled) height, which depends critically on the surface geometry, but also a high- 
or low-pressure region associated with a cyclonic disturbance in the far field, which 
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depends only on the obstacle displacement volume. Except in the homogeneous limit 
(0 = O ) ,  this cyclonic feature exists at all degrees of stratification, but has not been 
taken into account in existing far-field studies based on the group-velocity concept 
or stationary-phase method. The limit of an unbounded 6’ in the present work recovers 
the Laplace equation with the Neumann boundary condition of Hogg (1973) and 
Ingersoll(1969), in which a solitary anticyclonic disturbance in the far field is implicit 
and is responsible for the large-scale stationary eddy a t  a high 0. The coexistence of 
a solitary cyclonic disturbance with lee waves in the far field at, all bounded 0 =j= 0 
has never been suspected, however. Although the analysis presented are limited to 
a small B, the cyclonic feature will also remain for all 9 + co as an examination of 
the contribution from the evanescent wavetrain at w = (T = 0 for 9 $- 0 will readily 
confirm in the linear case. 

Our basic mathematical model is that of an inviscid Boussinesq fluid in almost- 
rigid-body rotation about a verticalaxis. Thus, unlikemodelsofplanetary atmospheres 
and oceans, the theory can be subjected to laboratory verification in an upright 
rotating container. Both the far-field analysis and the computational studies have 
been based on the solution to the linearized version of the reduced equations of the 
asymptotic theory appropriate for a thin obstacle, which is further specialized to an 
infinite depth. The results are expected to furnish a meaningful characterization of 
the flow and wave patterns of a rapidly rotating Boussinesq fluid, not necessarily 
restricted to a thin topography, since the linearization does not lead to a degeneracy. 
The linear solution provides a valuable base for testing and guiding computation 
methods for the study of the corresponding nonlinear problem. 

Among the outstanding questions raised by the cyclonic far field are one on its 
evolution and another on the admissibility of a periodic solution as an alternative 
to the steady-state solution at large t. Their answers, even in the framework of the 
linear theory, should be of great interest to an understanding of the cyclogenesis (cf. 
discussions in Buzzi & Tibaldi 1977; Hogg 1980). 

The analysis for a non-vanishing Rossby number, to appear in a forthcoming paper, 
will complement the present work and bring out the subtle alterations in the flow 
structure related to changes in the group-velocity direction a t  0 < to that a t  
0 > (iLJ5’-2. This changeover will affect critically the wave patterns about, as well as 
the hydrodynamic forces on, a ground topography. The Earth’s rotation effects on 
(stratified) flows over mountains, particularly on drags and side forces of ridges, have 
been studied in a series of highly interesting papers by Smith (1979a, b, c), as noted 
earlier. Smith’s analysis are restricted to cases corresponding to either a very large 
9 or a very small 9; the existence of the critical condition B26’ = $ was not 
considered. 

An important aspect not considered above is the viscous effects. From Johnson’s 
(1982) study, i t  is seen that viscous damping and the Eckman-layer pumping have 
the expected effect of reducing the high-wavenumber components. Since the 
wavenumber intensity in the lee waves increases with 0, according to the foregoing 
inviscid analysis, the expected viscous dissipation of the lee waves should further 
enhance the prominence of the cyclonic feature. Another important aspect yet to be 
studied is the effect of a finite depth. Stewartson & Cheng (1979) found that the 
homogeneous flow in a rotating container supports a bimodal structure, of which one 
mode is columnar in character and is controlled by 0-1 = L / 9 H .  The latter mode 
is absent in the solution for an infinite depth, and its significance appears to be 
substantiated by laboratory study (Heikes & Maxworthy 1982). The occurrence of 
this as well as the feature corresponding to the cyclonic disturbance in the case of 
finite 0 and 6’ $. 0 remain to be confirmed. 
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